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tion schemes—which are typically implicit—can be pro-
hibitively expensive to apply to complex nonlinear mod-Practical, structure-preserving methods for integrating classical

Heisenberg spin systems are discussed. Two new integrators are els. This article addresses issues of practicality and
derived and compared, including (1) a symmetric energy and spin- efficiency in the numerical solution of a conservative
length preserving integrator based on a Red-Black splitting of the nonlinear partial differential equation, the Landau–
spin sites combined with a staggered timestepping scheme and (2)

Lifshitz (LL) equation. This system possesses integrala (Lie-Poisson) symplectic integrator based on Hamiltonian splitting.
invariants, a symplectic structure, and a time symmetry;The methods are applied to both 1D and 2D lattice models and are

compared with the commonly used explicit Runge–Kutta, projected we compare implicit and semi-explicit methods that pre-
Runge–Kutta, and implicit midpoint schemes on the bases of accu- serve each of these layers of structure.
racy, conservation of invariants and computational expense. It is The LL equation, originally proposed as a model of a
shown that while any of the symmetry-preserving schemes im-

continuous anisotropic Heisenberg ferromagnet, is givenproves the integration of the dynamics of solitons or vortex pairs
bycompared to Runge-Kutta or projected Runge Kutta methods, the

staggered Red-Black scheme is far more efficient than the other
alternatives. Q 1997 Academic Press ­S

­t
5 S 3 =2S 1 S 3 DS, (1)

1. INTRODUCTION where S 5 S(x, y, t) [ R3, iSi2 5 1. The matrix D [ R333

represents the anisotropy and may be assumed to be di-Recent studies of algorithms for conservative nonlinear
agonal, D 5 diag(d1 , d2 , d3), and ud1u # ud2u # ud3u. Thissystems arising in simulations of celestial mechanics [1],
equation has been described in [6] as a ‘‘universal integ-rigid body motion [2], and partial differential equations
rable system’’ since various known integrable PDEs such(PDEs) [10, 16] have proposed methods that preserve
as the nonlinear Schrödinger equation and sine-Gordongeometric features, such as time-reversal symmetry or
equation can be derived from its one space dimensionalsymplectic structure, present in the equations of motion.
version as limiting cases. Variants of the LL equation—andImproved energy conservation in long term simulations
discrete analogues—are important in understanding theand improved resolution of global or very long term
properties of magnetic materials and have been the subjectsolution behavior are some of the hoped for benefits
of recent numerical studies appearing in the physical litera-from the use of geometric integrators. Despite the obvious
ture [13, 21, 22].aesthetic appeal of using a geometric integrator as op-

In Section 2, we describe integrals and symmetriesposed to an integrator that preserves none of the available
of the lattice version of the Landau–Lifshitz equationstructure, the question of the practical importance of
obtained as spatial finite difference approximations ofgeometric integrators in numerical simulations has so far
the LL equation. Integral conservation will be one basisremained largely open. For the very large systems arising
for our comparison of various numerical methods. Thefrom the discretization of partial differential equations
presence of integral invariants such as the spin lengthsin two or three dimensions, efficiency issues become
raises the question of whether integration would notextremely important, and the standard geometric integra-
better be performed on the reduced system obtained
by parameterizing the constraints. Although such an

1 E-mail: frank@math.tudelft.nl. approach is possible in canonical coordinate charts, it is
2 E-mail: huang@math.ukans.edu. This author was supported in part

not very practical for reasons outlined in [8, 9]. Inby the National Science Foundation under EPSCoR Grant OSR-9255223.
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must be carried out one or more times at each timestep. The 2D Eq. (1) can be discretized using second order
central differences,Also in Section 2, standard timestepping schemes for

the semi-discrete system are described. Two geometric
integrators are developed in Section 3 by splitting either d

dt
Sij 5 Sij 3

1
h2 (Si, j21 1 Si, j11 1 Si21, j 1 Si11, j 2 4Sij)

the Hamiltonian or the vector field to decouple the
system into small integrable systems. The conservative

1 Sij 3 DSij ,properties of these methods are also discussed in the
section. In Section 4 we compare the various schemes, or, from Sij 3 Sij 5 0,
first for the integration of a known periodic solution of
the 1D system, and second for the time evolution of 2D d

dt
Sij 5 Sij 3

1
h2 (Si, j21 1 Si, j11 1 Si21, j 1 Si11, j)anisotropic vortex systems. Finally, Section 5 is devoted to

conclusions.
1 Sij 3 DSij ,

(4)

where Sij(t) P S(ih, jh, t). The boundary conditions are
2. LATTICE LANDAU–LIFSHITZ AND incorporated by either (periodic case)

RELATED SYSTEMS

Si,N11 ; Si,1 , Si,0 ; Si,N , SN11, j ; S1, j , S0, j ; SN, j (5)
In this section we consider a spatial discretization of Eq.

(1). For simplicity, we assume that Eq. (1) is defined either for 0 # i, j # N, or (homogeneous Dirichlet case)
on a one-dimensional domain V 5 (2L, L) or on a rectan-
gular domain V 5 (2L, L) 3 (2L, L) in two dimensions, Si,N ; 0, Si,0 ; 0, SN, j ; 0, S0, j ; 0. (6)
supplemented by periodic or homogeneous Dirichlet

Equation (4) with h 5 1 will be referred to as the latticeboundary conditions. We also work on a uniform mesh
Landau–Lifshitz equation.hxi 5 2L 1 ih, i 5 0, ..., Nj in one dimension or h(xi , yj)

For the numerical experiments of this paper we have; (2L 1 ih, 2L 1 jh), i, j 5 0, ..., Nj in two dimensions,
used an alternative form of the semi-discrete system forwhere h 5 2L/N and N is a certain positive even integer.
Eq. (1). Replacing Sij in the term DSij in Eq. (4) by anThe simplest discrete form of the LL equation is the
average, viz.,one-dimensional isotropic Heisenberg spin chain,

Sij 5 Af (Si, j21 1 Si, j11 1 Si21, j 1Si11, j),
d
dt

Si 5
1
h2 Si 3 (Si21 2 2Si 1 Si11) results in

d
dt

Si, j 5 Si, j 3 M(Si, j21 1 Si, j11 1 Si21, j 1 Si11, j), (7)
or, using Si 3 Si 5 0,

where M ; I/h2 1 D/4 is again a diagonal matrix. It is
easy to see that (7) is also a second order approximationd

dt
Si 5

1
h2 Si 3 (Si21 1 Si11). (2) to Eq. (1). After [15], we will refer to this as the Roberts

discretization.
The system (4) or (7) can always be rewritten in the

With periodic boundary conditions, this system has an form of the lattice Landau–Lifshitz equation (i.e., the sys-
exact solution [15, 19], tem with h 5 1) by rescaling Si, j and the anisotropic matrix

D without altering the dynamical properties. Thus, we will
always assume that h 5 1 in the following discussion. We

Si(t) 5 (a cos ui 1 b sin ui) cos f 1 c sin f, (3) refer to the discrete Sij as spin vectors. Equation (7) is
fairly general and allows for simulations of many physical
phenomena [13, 23]. For example, the easy-plane aniso-where
tropy spin system considered in [23] can be described by
Eq. (7) with

ui 5 ip 2 gt, g 5 2(1 2 cos p) sin f,

M 5 3
1 0 0

0 1 0

0 0 1 2 d
4, (8)

f, p [ R are scalar constants, and a, b, c [ R3 form a
right-handed set of orthogonal unit vectors.
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where d is a parameter in (0, 1). This system admits stable The system (7), though not fully integrable, does possess
certain obvious integral invariants:vortex solutions.

(i) The individual spin lengths are conserved,2.1. Properties of the Equations
iSi, ji2 5 constant.

We next enumerate some of the important features of (ii) The total spin, oi Si , provides three additional in-
the spin system (7) that make it an excellent test case for variants in the isotropic case of periodic boundary condi-
studying the relevance of geometric aspects for the design tions.
of numerical integrators. These properties include a Hamil-

(iii) The Hamiltonian is of course always an integral.tonian structure, various conserved quantities, and a scal-
ing symmetry. In certain circumstances, there may be additional integrals

We will use the following notation: for a vector u [ R3, of the motion, such as the discrete gyrovector mentioned
associate a 3 3 3 skew-symmetric matrix skew(u) such in [23].
that, for any v [ R3, v 3 u ; skew(u)v. Next we consider scale invariance of the discrete sys-

Define a vector S based on the natural ordering of the tems. Suppose S 5 S(t) is a solution of the system (7), and
grid points: consider a scaling of time given by t* 5 t/a. We try to find

a b such that S*(t*) ; bS(t) 5 bS(at*) is also a solution
S 5 [S T

1,1 ... S T
1,N S T

2,1 ... S T
2,N ... S T

N,1 ... S T
N,N]T. of (7) (in the new coordinate t*). For such a b we must have,

It is easy to verify that Equation (7) can be written as a
(Lie–Poisson) Hamiltonian evolution equation [12]

d
dt*

S*i j(t*) 5 b Sd
dt

SijD dt
dt*

5 ab
d
dt

Sij(t) (10)

5 abSij(t) 3 M(Si, j21(t) 1 Si, j11(t)d
dt

S 5 J=SH
1 Si21, j(t) 1 Si11, j(t)) (11)

for the dependent variable S, with Hamiltonian
5

a
b

S*i j(t*) 3 M(S*i, j21(t) 1 S*i, j11(t)

H 5 2 O
i, j

Si, j ? M(Si11, j 1 Si, j11), (9)
1 S*i21, j(t) 1 S*i11, j(t)) (12)

and the block diagonal symplectic structure matrix Thus, S*(t*) is a solution when b 5 a, and we have just
J 5 J(S) consisting of blocks skew(Si, j) enumerated se- shown
quentially along the diagonal consistent with the natural

THEOREM 1 (Scale Invariance). If S(t) is a solution ofordering of the unknowns.
(7), so is aS(at).The Poisson bracket is defined (for any pair of smooth

functions f and g of S) by As before, let Ft be the flow map. Taking a 5 21,
the scaling relation implies, by uniqueness, that Ft(S) 5

h f, gj :5 =f TJ=g. 2F2t(2S) for an arbitrary vector S, or, since F2t is the
inverse of the flow map, that

This bracket obeys the Jacobi identity,

Ft(S) 5 2F21
t (2S), ;S [ R3. (13)

hh f, gj, hj 1 hhg, hj, f j 1 hhh, f j, gj 5 0,

We do not know of any time integration methods thatfor the C2 functions f, g, and h.
preserve the general form of the scaling law, but the time-The fact that (7) is Hamiltonian implies that the flow
symmetry (13) is maintained by a number of differentmap Ft (which evolves points of phase space through t
methods.units of time) is symplectic; in other words,

2.2. Commonly Used Timestepping Schemes
F9t

TJF9t 5 J.
We restrict our attention to one-step numerical integra-

tion schemes, i.e., schemes that can be viewed as approxi-This is a strong invariant property of the flow map and
one which has recently been studied in the context of mations F̂t of the flow map.

The commonly used methods for integrating thenumerical integration schemes, with most of available re-
sults requiring constant J [17]. Landau–Lifshitz equation and its variants are explicit
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Runge–Kutta methods, which are relatively fast but have block tridiagonal with elements given by
poor conservation properties. Recent studies of various
nonlinear systems (see, e.g., [5]) have suggested using the ­F(Ŝ)

­Ŝi

5 I 2 Dt skew(Ŝi21 1 Ŝi11),implicit midpoint rule, which has much better conservation
properties but is computationally expensive.

The integrators to be introduced later are both second ­F(Ŝ)

­Ŝi61

5 Dt skew Ŝi .order (though they may be extended to higher order), so
in some cases we consider the comparison with the second
order explicit Runge–Kutta method, also known as Heun’s The resulting system can be solved by the block Thomas
method. For the general equation S

.
5 f (S), it takes the algorithm. In two dimensions the Jacobian is more compli-

form cated, with a block sparse structure analogous to that of
the two-dimensional standard discrete Laplacian.

The implicit midpoint method preserves symmetry (13)
Sn11 5 Sn 1

Dt
2

[ f (Sn) 1 f (Sn 1 Dt f (Sn))], (14) and conserves quadratic first integrals [4] such as the energy
and spin lengths, but it is very slow in practice, particularly
in two or more space dimensions. This method is also
symplectic for canonical Hamiltonian systems, but not forwhere Dt is the time stepsize, Sn is an approximation to
the Landau–Lifshitz equation considered here, because ofS(tn), and tn 5 t0 1 n Dt.
its nonconstant Poisson structure matrix.All standard schemes conserve linear first integrals such

as the total spin. Like the common fourth order explicit
Runge–Kutta method, Heun’s method conserves none of 3. GEOMETRIC INTEGRATION SCHEMES
the other (quadratic) invariant quantities mentioned pre-

The two integrators to be introduced in this section areviously, though conservation of the individual spin lengths
most easily described for the one-dimensional system (2).can be forced as in [13] if we augment the scheme by
In both cases the extension to two dimensions is straight-scaling each spin vector to length one (i.e., projecting to
forward, and exceptions for the added coupling in (7) willthe unit sphere) at each integration step. Since the violation
be noted.of the invariant in a single step will be of order no worse

Recall that a splitting H 5 H1 1 H2 of the Hamiltonianthan that of the local truncation error, this operation does
defines a consistent approximation to the flow map via thenot change the order of the method. Other integral invari-
consecutive solution of the systemsants could also be preserved by a more complicated projec-

tion. Such projected Runge–Kutta methods have been
studied in [18] based on linearized stability analysis. How- S

.
5 J=H1 (16)

ever, as our experiments will indicate, projection does little
S
.
5 J=H2 (17)to improve the nonlinear stability of the method. It is also

worth noticing that any method can be combined with
over an interval of length Dt. If each of the vector fields(nonreversible) stabilization of first algebraic integrals such
resulting from the splitting happens to be exactly integ-as the energy (e.g., see [14]). However, we will not discuss
rable, then a numerical integration scheme is obtained asthis procedure here because it is well known that an energy
the concatenation of the flows of the two systems. Forpreserving scheme does not necessarily have long term
Hamiltonian H, let VH represent the corresponding vectorstability [17].
field, and let exp tVH represent the resulting flow map. AsThe implicit midpoint rule, applied to the one-dimen-
pointed out in [24], for a splitting H 5 H1 1 H2 , it is asional spin system (2), gives
consequence of the Baker–Campbell–Hausdorff theorem
that the local error is of second order,

0 5 Ŝi 2 Sn
i 2

Dt
2

Ŝi 3 (Ŝi21 1 Ŝi11) 5: Fi(Ŝ),
exp tVH 5 exp tVH2

n exp tVH1
1 O(t2),

i 5 1, ..., N (15)
implying that the method is first order accurate. Given suchSn11

i 5 2Ŝi 2 Sn
i .

a splitting, and assuming that each of the Hamiltonians H1

and H2 respects the time symmetry, the method defined by

The first set of equations is implicit and nonlinear, so we
must use an iterative solver such as Newton’s method. The

Ft :5 exp
1
2

tVH1
n exp tVH2

n exp
1
2

tVH1Jacobian matrix for Newton iterations applied to (15) is
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is a second order symmetric approximation to the flow Thus the subsystem corresponding to Hamiltonian H1 is
exactly integrable. Similarly, the subsystem on H2 is exactlymap of H. Because it is formed from the concatenation of

symplectic (or Lie–Poisson, in our case) maps, it will also integrable. We use these two flows successively to develop
an approximate integrator. The complete timesteppingbe a symplectic (Lie–Poisson) map.

A generalization of this approach is obtained by consid- procedure can be summarized as follows: we first sweep
through the odd indices, sum each spin vector with itsering arbitrary splittings of the vector field VH , i.e., not

necessarily derivable as a splitting of the Hamiltonian. If neighbor to the right to get Bi , and compute the rotation
matrix exp(Dt skew Bi), applying this rotation to both of
the spin vectors. We then repeat the sweep, this time cou-VH 5 V1 1 V2 ,
pling each of the odd spins with its neighbor to the left.
Note that this procedure involves many independent tasksthen the method obtained by the symmetric concatenation
which could be effectively computed in parallel.of the flows of symmetric vector fields:

To extend this method to the two-dimensional aniso-
tropic system (4) with h 5 1, we utilize Red–Black ordering
of the domain, defining the setsF̃t :5 exp

1
2

tV1 n exp tV2 n exp
1
2

tV1

reds 5 h(i, j)ui 1 j evenj, blacks 5 h(i, j)ui 1 j oddj. (19)
is again second order and symmetric.

To integrate the discretization (4), we make use of the
3.1. A Lie–Poisson Method symmetric splitting

This method will be derived based upon a Hamiltonian
H 5 AsH1 1 AsH2 1 AsH3 1 AsH4 1 H5splitting. Consider a splitting H 5 H1 1 H2 of the Hamilto-

nian H 5 2oi Si ? Si11 for the system (2) with 1 AsH4 1 AsH3 1 AsH2 1 AsH1 ,

H1 5 2 O
i odd

Si ? Si11 where

H1 5 O
reds

Si, j · Si11, j , H2 5 O
reds

Si, j · Si21, j ,H2 5 2 O
i odd

Si ? Si21 .

H3 5 O
reds

Si, j · Si, j21 , H4 5 O
reds

Si, j · Si, j11 ,
Let the integration of (16) propagate the numerical solu-
tion from Sn to Ŝ. The equations of motion corresponding

H5 5 O
i, j

Si, j · DSi, j .to H1 are

S
.
i 5 2skew(Si)Si11 5 Si 3 Si11 ,

The Hamiltonian H5 , which is the Hamiltonian of the
S
.
i11 5 2skew(Si11)Si 5 Si11 3 Si , Euler rigid body equation is not integrable; we follow the

approach used by Reich [14] and further split this term asi 5 1, ..., N and i odd.
follows: H5 5 AsH5a 1 AsH5b 1 H5c 1 AsH5b 1 AsH5a , where,
denoting the three components of Sij by S1

i j , S2
i j , and S3

i j ,
These equations can easily be solved in pairs. In fact, for we have
odd index i we have

H5a 5 O
i, j

d1(S1
i j)2, H5b 5 O

i, j
d2(S2

i j)2,
Si 1 Si11 ; const 5 Sn

i 1 Sn
i11 5 Bi ,

S
.
i 5 Si 3 Si11 5 Si 3 (Bi 2 Si) 5 (skew Bi)Si , H5c 5 O

i, j
d3(S3

i j)2.
(20)

S
.
i11 5 Si11 3 Si 5 Si11 3 (Bi 2 Si11) 5 (skew Bi)Si11 .

Each of these terms yields an integrable system involving
We can then solve the resulting differential equations only rotations. (Note that for easy plane anisotropy (8),
exactly for a timestep Dt: the terms H5a and H5b vanish.) Specifically, this method

requires 13 rotations in general per spin vector per time
Ŝi 5 eDt skew BiSn

i ,
(18)

step, with the result that it is slow when implemented
Ŝi11 5 eDt skew BiSn

i11 . sequentially. However, the scheme involves many tasks
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that can be executed in parallel. Despite the large number so that we have the equations
of parts of this splitting, the scheme appears to retain a
reasonable degree of numerical stability. d

dt
Pi 5 Pi 3 (Q i21 1 Q i),

d
dt

Q i 5 Q i 3 (Pi 1 Pi11),For the Roberts discretization (7) in the anisotropic case,
the appropriate Hamiltonian splitting is simplified, and

i 5 1, ..., N/2.
(22)

would rely on the exact integration of pairs of neighboring
spins of the form

Define a vector field splitting by

d
dt

Sij 5 Sij 3 MSkl , P1 3 (Q !sN 1 Q1)

0d
dt

Skl 5 Skl 3 MSij .
P2 3 (Q1 1 Q2)

0
V1 5 andSince M is symmetric, we can write 3 4P3 3 (Q 2 1 Q 3)

.

.

.d
dt

Skl 5 Skl 3 MSij
P !sN 3 (Q !sN21 1 Q !sN)

5 2MSij 3 Skl 0

5 2Sij 3 MSkl 0

Q 1 3 (P1 1 P2)5 2
d
dt

Sij .
0

Q 2 3 (P2 1 P3)Thus we can write Sij 1 Skl 5 D 5 const, and this relation V2 5 .3 4can be used to reduce the first differential equation to 0

Q 3 3 (P3 1 P4)
.
.d

dt
Sij 5 Sij 3 M(D 2 Sij), .

Q !sN 3 (P !sN 1 P1)

which is essentially the Euler equation. In other words, we
It is easy to see that each of these vector fields is exactlydo not have a means of exactly integrating the splitting, and

integrable; all that is required is the computation of aso must rely on a further decomposition of the problem. It
rotation (as a matrix exponential) for each spin vector atis therefore likely that the previous approach, based on
each timestep. We implement the symmetric approxima-solving (4), is more appropriate.
tion method F̃t using the pair of vector fields V1 and V2 .

The resulting method will not be symplectic, however,3.2. A Staggered Red–Black Method
since the vector field splitting does not correspond to a

An alternative method also uses Red–Black ordering of splitting of the Hamiltonian. Since the method is only sym-
the domain and additionally staggered computation of red metric, it seems reasonable to replace the rotations with
and black grid points. This approach leads to a method with second order Padé (1, 1) approximations to the corre-
similar numerical conservation properties to the reversible sponding matrix exponential (preserving the symmetry).
energy–momentum method (see [7]) proposed for in- Recall that the Padé (1, 1) approximation of ehA is just the
tegrating canonical Hamiltonians, but the method of this Cayley transform:
section is explicit, requiring only the solution of as many
3 3 3 linear algebraic systems as the number of spin sites. ehA P (I 2 AshA)21(I 1 AshA).

Consider again the one-dimensional semidiscrete system
with an even number of spin sites. Define

This proves to reduce the cost of the step update consider-
ably, and may be particularly important in two or three
space dimensions.(21)Pi ; S2i21 , Q i ; S2i , i 5 1, ..., N/2,
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By simplifying the resulting equations—eliminating the
Pn11

i 5 Pn
i 1

Dt
2

(Pn11
i 2 Pn

i ) 3 (Qn11/2
i21 1 Qn11/2

i )P approximations at half steps in time and those of Q at
whole steps—the described method can be seen to be

1
Dt
2

(Pn
i 1 Pn11

i ) 3 D(Pn
i 1 Pn11

i ). (27)equivalent to the following staggered timestepping scheme:

This requires the solution of a three-dimensional nonlinearQn11/2
i 5 Qn21/2

i 1
Dt
2

(Q n11/2
i 1 Q n21/2

i ) 3 (Pn
i 1 Pn

i11), (23)
system at each spin site, at each step.

Using the Roberts discretization in the anisotropic case,Pn11
i 5 Pn

i 1
Dt
2

(Pn11
i 1 Pn

i ) 3 (Q n11/2
i21 1 Qn11/2

i ). (24)
on the other hand, merely modifies the form of the linear
systems that must be solved: no implicit solve is required.

In general, we need to solve a linear system at each step,
3.3. Conserved Quantities of the Lie–Poisson andcomputing an explicit, orthogonal update such as

Staggered Red–Black Schemes

Both the Lie–Poisson and staggered Red–Black
Q n11/2

i 5 SI 2
Dt
2

skew BD21SI 1
Dt
2

skew BDQn21/2
i , (25) schemes conserve the lengths of spin vectors. Both schemes

also conserve the total spin (for the isotropic problem with
periodic boundary conditions), and—somewhat surpris-

where B 5 Pn
i 1 Pn

i11 . The update for P is similar. ingly, given its simplicity and its semi-explicit form—the
For the purpose of starting, or to have a mapping of staggered scheme conserves the energy (for both isotropic

phase space, we introduce an approximation to Q at time- and anisotropic cases and with either type of boundary
steps and decompose (23) into conditions).

Recall that a Hamiltonian system H possesses an integral
R provided the Poisson bracket of R with H vanishes:

Qn11/2
i 5 Qn

i 1
Dt
2

Qn11/2
i 3 (Pn

i 1 Pn
i11),

hR, Hj 5 0.
Qn11

i 5 Qn11/2
i 1

Dt
2

Qn11/2
i 3 (Pn11

i 1 Pn11
i11 ).

For the one-dimensional spin-chain, let T 5 oi Si . We
have, for each of the three components T(l) , l 5 1, 2, 3 of R,In this form we recognize the scheme as the second order

Lobatto IIIA–B partitioned Runge–Kutta method [18] ap-
plied with the indicated partitioning of the variables. hT(l) , Hj 5 SON

i51
Si 3 (Si21 1 Si11)D

(l)Extension of this scheme to the 2D isotropic case is
straightforward. After Red–Black splitting, we again ob-
tain two vectors P and Q of spins. For any spin vector Pi, j ,

5 SO
i

Si 3 Si21 2 O
i

Si11 3 SiD
(l)we will have to compute an update such as (25), but with

B consisting of the sum of all neighboring spin sites.
5 0,When extending the staggered Red–Black scheme to

treat an anisotropy such as (8), the Roberts discretization
presents a distinct advantage over the lattice Landau– by use of the periodic boundary conditions. Similarly, for
Lifshitz equation. For the standard lattice Landau–Lifshitz the Lie–Poisson scheme,
equation (4), we need to handle the rigid body term
Si 3 DSi which arises on the right hand side. For a symmet-
ric integrator, we can utilize the Padé (1, 1) approximation hT(l) , H1j 5 SON/2

k51
(S2k21 3 S2k 1 S2k 3 S2k21)D

(l)
5 0, (28)

for this term, leading to the staggered scheme (in the
1D case)

and, likewise, hT(l) , H2j 5 0. The total spin is thus a con-
served quantity of each step of the scheme. This argumentQn11/2

i 5 Qn21/2
i 1

Dt
2

(Qn11/2
i 1 Qn21/2

i ) 3 (Pn
i 1 Pn

i11)
is easily generalized to the isotropic problem on a 2D
lattice. (The total spin is not an integral of the aniso-

1
Dt
2

(Qn11/2
i 1 Qn21/2

i ) 3 D(Qn11/2
i 1 Qn21/2

i ), tropic system.)
Next, we turn to the staggered discretization. Recall that

(26) R is an integral of a vector field V provided =RTV ; 0.
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For example, for the energy H, we automatically have

=H TJ=H 5 0,

since J is skew-symmetric. Considering now the one-
dimensional isotropic case, observe that

=H TV1 5 O(1/2)N

i51
Pi · (Pi 3 (Qi 1 Qi11)) 5 0,

with a similar relation for V2 , so the Hamiltonian is con-
served under the vector field splitting. Conservation of the

FIG. 1. A comparison of the error for the one-dimensional isotropic
total spin, and—in the isotropic case—of the energy, can spin chain.
be viewed as a consequence of more general integral–
preservation properties of the Lobatto IIIA-B PRK
scheme. Both of these integrals can be written in the form [1, 2, 21]T/Ï6, b 5 [2, 1, 4]T/Ï21, and c 5 a 3 b, where
PTAQ, for A a constant matrix. It is well known that such N is the number of spins on the chain.
integral invariants are conserved by partitioned Runge– We first consider a chain of N 5 20 spins, integrating
Kutta methods whose coefficients satisfy a certain algebraic with a time stepsize of Dt 5 0.02 over a short time period
condition which is equivalent to the condition for such (2000 time units). Figure 1 illustrates the error evolution
a method to be symplectic when applied to a canonical of the various methods. Here the error is defined as the
Hamiltonian system—and which is satisfied by the Lobatto Euclidean norm of the difference between the computed
IIIA–B PRK pair. and exact spin vectors at an arbitrarily selected site (i 5 14)

In this context, we observe another superior feature of in the spin chain. It can be seen that all of the methods
the Roberts discretization as compared to the Lattice have similar error growths. The IM and Hp methods pro-
Landau–Lifshitz formulation. For the former discretiza- duce more accurate results than the other methods for the
tion, the energy retains the form of a bilinear invariant in short time period. However, we shall see that in the long
P and Q, even in the anisotropic case, and thus remains a term, both the H and Hp methods blow up, while the IM
conserved quantity under discretization. The discretization method is very expensive from the computational point of
(4), in addition to requiring more computational work, view. In fact, in order to generate the results shown in the
does not lead to an energy conserving method when treated figure the IM method took more than 20 times as long as
with Red–Black splitting. that the RB scheme did, making it feasible to use the RB

method with an order of magnitude smaller stepsize in
4. NUMERICAL EXPERIMENTS AND DISCUSSION place of the IM method. The operations counts for all of

the schemes are summarized in Table I. (In the table, NIn this section we present numerical experiments used
is the number of spins in the system, and m is the numberto validate the integrators described in the previous sec-
of Newton iterations required.)tions: the explicit Runge–Kutta methods (the fourth order

Now we look at the conservative properties of thesemethod (RK4) and Heun’s method (H) given by (14)), the
schemes. The error in the z-component of the total spinprojected explicit Runge–Kutta methods (the projected
is shown in Fig. 2. Apparently the total spin is conserved tofourth order (RK4p) and projected Heun’s (Hp) methods),
rounding error accuracy by all methods. More interesting isthe implicit midpoint (IM) given by (15), the Lie–Poisson
the conservation of individual spin length at an arbitrarilymethod (LP) of Section 3.1, and the staggered Red–Black

scheme (RB) of Section 3.2. Two examples are considered:
the first one is the one-dimensional isotropic system with

TABLE Ithe exact solution given by (3) and the other is the problem
Operations Countsof anisotropic vortices on a two-dimensional lattice.

Integrator 1-D 2-D 3-D Aniso.4.1. Isotropic Spin Chain on a One-Dimensional Lattice

Heun 39N 51N 63N 12NFor comparing the accuracy and stability of the inte-
Implicit midpoint (19m 1 407)Ngrators it is handy to integrate the one-dimensional Heisen-
Red–Black 86N 92N 98N 1N

berg chain (2) with the exact solution. We choose the Lie–Poisson 94N 221N 348N 141N
parameters in equation (3) as f 5 f/3, p 5 2f/N, a 5
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FIG. 4. Energy conservation properties for the various schemes.

FIG. 2. Total spin conservation properties (z-component) for the readily be seen that both the H and Hp methods blow up
various schemes. at around t 5 105 while the LP and RB schemes retain

good stability and accuracy.

4.2. Anisotropic Vortices on a Two-Dimensional Latticeselected site (i 5 14) shown in Fig. 3. The individual spin
length is conserved by all of the methods but the (unpro- The study of vortices and antivortices in Heisenberg
jected) Heun method. Figure 4 shows the energy conserva- ferromagnets has attracted considerable interest from
tion properties for the schemes. Using the IM and RB physicists in recent years, e.g., [11, 13, 23, 22]. Among many
methods, the Hamiltonian is conserved to the level of applications, these problems are representative of the de-
roundoff error. The deviation of the energy obtained with pendence of macroscopic coherent structures on micro-
the Lie–Poisson method oscillates but appears to stay scopic interactions [20]. The motion of vortex pairs in spin
bounded in the short term. (The oscillation is reduced lattices with easy-plane anisotropy (8) is developed in [20].
somewhat in frequency in the figure by sampling every five Mertens et al. [11] present theoretical and computational
steps in order to show the error of the Hp method in the results for various combinations of vortices and anti-
same figure.) To show the stability of the schemes, we next vortices, including some very interesting vortex core trajec-
integrate the system of the same number of spins with tories. In [23] Wysin et al. showed that such vortices in
Dt 5 0.02 for a much longer term. Figure 5 shows the results easy plane magnets have an effective mass and momentum.
obtained with the H, Hp, LP, and RB methods. It can Wysin [22] also determined theoretically the threshold on

various grid structures for the parameter d in (8) between
stable in-plane and out-of-plane vortices. In [13] the inter-
action of vortex pairs and vortex–antivortex pairs gov-

FIG. 5. Energy conservation properties of the various schemes forFIG. 3. Individual length conservation properties of the various
schemes. the long term.
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erned by a modified Landau–Lifshitz equation were stud-
ied numerically. Elementary forms for planar vortices are
developed in [13]. An antivortex is the complex conjugate
of a planar vortex field. Additionally, planar vortices
(antivortices) have a positive or negative orientation (for
vortices, whether they are counterclockwise or clockwise,
respectively). The vortices admitted by easy-plane
anisotropy have as well a positively or negatively oriented
out-of-plane component near the vortex core, with a spin
vector at the core having no component in the plane. There
are thus six types of vorticial motion (considering antivorti-
ces as a type of vortical motion) in easy-plane magnets.

We consider two vortex systems in this section: a vortex–
FIG. 7. Vortex–antivortex core trajectories computed by the stag-vortex pair with like out-of-plane orientation and opposite

gered Red–Black scheme. The initial and final core locations are indicatedrotational orientation and a vortex–antivortex pair with
with ‘‘o’’ and ‘‘1,’’ respectively. The solid line is for the vortex and theopposite out-of-plane and rotational orientations. For the dashed line for the antivortex.

numerical experiments of this section, we used the homo-
geneous Dirichlet boundary conditions and easy plane
anisotropy (8) with d 5 0.1 for the vortex–antivortex pair
and d 5 0.2 for the vortex–vortex pair. These values of properties of Gilbert damping. For our vortex–antivortex
the anisotropy parameter admit stable out-of-plane simulation, a value c 5 0.3 of the damping parameter was
vortices [22]. Due to the significantly increased workload used and the integration was performed for 500 steps of
for the IM method in two dimensions, we felt that the size Dt 5 0.1. For the vortex–vortex simulation we damped
method would not be competitive and did not implement with c 5 0.5 for 30,000 steps of size Dt 5 0.001. We used the
it. We instead compare results with those for the classical following heuristic method to determine the core location
fourth-order Runge–Kutta method and a projected version during the evolution of the system. Since the vortex and
of the same. antivortex had opposite out-of-plane components, we

To obtain initial vortex (antivortex) solutions, we started searched for the maximum and minimum out-of-plane
with elementary planar rotational fields with no out-of- components; then we determined the adjacent cell with
plane component (these were obtained by projecting vor- maximum sum of out-of-plane component magnitudes.
tex solutions of the Skyrmian system of [13] into the plane). Finally the location of the core was taken as a mass average
Then, following [23], a small out-of-plane component was over the nine adjacent cells (16 spins), with discrete mass
given to the four spin sites surrounding the vortex (anti- given (through trial and error) by
vortex) core. Next the equations of motion were integrated
with an additional Gilbert damping term using the RK4 Dmij 5 uSz

iju5,
scheme. The reader is referred to [3] for the details and

FIG. 6. Vortex–antivortex core trajectories computed by the pro- FIG. 8. Vortex–antivortex core trajectories computed by the Lie–
Poisson method. The initial and final core locations are indicated withjected fourth order Runge–Kutta method. The initial and final core loca-

tions are indicated with ‘‘o’’ and ‘‘1,’’ respectively. The solid line is for ‘‘o’’ and ‘‘1,’’ respectively. The solid line is for the vortex and the dashed
line for the antivortex.the vortex and the dashed line for the antivortex.
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where Sz
ij is the z-component of the spin at grid location pair during approximately one half period of motion. In

the figure, the surface plot represents the z-components(i, j).
The experiments were conducted on various sizes of of spins and the vector field shows the x- and y-compo-

nents. For this case, we found that the system is very stablegrids. The following results for the vortex-antivortex pair
were obtained on a 50 3 50 lattice. The vortex and anti- and all of the projected Runge–Kutta, the Lie–Poisson,

and the staggered Red–Black methods produce fairlyvortex were initialized in the center of two grid cells located
on the axis, 14 grid spacings apart. Figures 6, 7, and 8 stable and accurate results even for a very long time

interval.illustrate approximately one period of vortex–antivortex
motion computed with the RK4p, RB, and LP integrators, The situation is quite different for the vortex–vortex

system. For comparison of stability, a vortex–vortex pairrespectively. The results are nearly identical to appearance,
and exhibit a hexagonal trajectory similar to that found in with like out-of-plane components and opposite rotational

directions were integrated on a 64 3 64 grid. Figure 10[11]. Figure 9 shows the evolution of the vortex–antivortex

FIG. 9. The evolution of the vortex–antivortex pair over about one half period of motion (from top to bottom and left to right). The surface
plot represents the z components of spins and the vector field shows the x and y components.
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TABLE II

CPU Time Comparison

Integrator Lattice Dt K Time, h

RK4p 64 3 64 0.1 300000 11.9
RK4p 64 3 64 0.05 600000 24.7
RK4p 64 3 64 0.025 1200000 48.3
RK4p 256 3 256 0.05 1200000 .485.0
RB 64 3 64 0.1 300000 2.5
RB 64 3 64 0.05 600000 5.0
RB 64 3 64 0.025 1200000 10.1
RB 256 3 256 0.05 1200000 168.0
LP 64 3 64 0.05 100000 6.6
LP 64 3 64 0.025 100000 6.6

vortex in a vortex–antivortex pair through approximately
10 periods of revolution of the system.

To conclude this section, we list in Table II CPU times
FIG. 10. Hamiltonian conservation. (a) projected RK4 vs RB for of some vortex–vortex simulations using our methods. In

stepsizes of Dt 5 0.1, 0.05, 0.025, (b) Lie–Poisson integrator and projected the table, K is the number of time steps taken. In general
RK2 vs RK4 and RB for stepsize of Dt 5 0.025. we see that the RB scheme requires about one-fourth the

time of the fourth-order RK scheme, and that the LP
illustrates the conservation of the Hamiltonian for the vari- method requires about eight times as long as the RB
ous methods. In the short term (about 0.46 periods of method. It is important to point out that these times are
revolution of the vortices), with a stepsize of Dt 5 0.025, dependent on the particular implementation that we have
the bottom pane of the figure shows that the Hp method used, and that a great deal of efficiency improvement would
blows up at time 2500. We also see that the integrations be possible in the computation of the matrix exponentials
using RB and LP schemes were stable over the integration of the LP method.
interval. On the long time interval, the top pane shows
over about 5.5 periods of the revolution of the vortices 5. CONCLUSIONS
that for stepsizes of 0.1, 0.05, and 0.025, the RK4p scheme

Two new integrators have been developed in the pre-eventually blows up, whereas the Hamiltonian computed
vious sections for simulating classical Heisenberg spinby the RB scheme remains on the order of roundoff error
systems. One of the new integrators, the Lie–Poissonfor all three stepsizes. (Note that we have not run the
method, was derived based upon a Hamiltonian splitting;LP integrator for this long time interval because it is too
it conserves all of the integrals (spin-length and total spin)expensive.) As a final illustration of the long term behavior
of the differential equations but the energy. The otherof the RB scheme, Fig. 11 shows the core trajectory of a
integrator was derived based upon a Red–Black splitting
and staggered timestepping. This method is time symmetric
and conserves all the available first integrals.

The two new integrators were applied to both 1D and
2D spin systems and compared with explicit Runge–Kutta
methods, their projected variants, and the implicit mid-
point scheme. The results show that both the Runge–Kutta
methods and their projected variants exhibit numerical
instability after long times, while the implicit midpoint is
computationally too expensive to be practical. On the other
hand, the numerical results have demonstrated the effi-
ciency and long time stability of both the Lie–Poisson and
staggered Red–Black schemes. We observed no qualitative
difference between the time-reversible and Lie–Poisson
schemes. For the 2D system, the staggered Red–BlackFIG. 11. Revolution over about 10 periods of the vortex–antivortex

pair obtained with the staggered Red–Black scheme. scheme requires about one-fourth the time of the projected
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Schnitzer, Cyclotron-like oscillations and boundary effects in thefourth-order Runge–Kutta scheme. If higher order
2-vortex dynamics of easy-plane magnets, in Bayreuth Workshop onmethods are needed, the technique of [24] could be used
Nonlinear Coherent Structures, 1993.

to construct reasonable fourth order or sixth order time-
12. P. J. Olver, Applications of Lie Groups to Differential Equations

reversible integrators. (Springer-Verlag, New York, 1986).
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